Advertisemen
Air murni tidak dapat menghantarkan listrik, namun air yang memiliki zat terlarut didalamnya dapat menghantarkan listrik. Pada Lab Maya ini dapat diujikan berbagai macam larutan, dan menentukan mana saja yang menghantarkan listrik
Sebelum anda menggunakan virtual lab untuk praktikum, baca teori, download Lks, dan Teori manual Penggunan
TEORI: DAYA HANTAR LISTRIK DAN REAKSI REDOKS
A. Sifat Hantar Listrik
Mobil, bus, dan sepeda motor merupakan alat transportasi yang banyak digunakan. Salah satu bagian yang berperan penting dalam kendaraan adalah aki. Alat yang berfungsi untuk menghidupkan mesin ini mengandung larutan asam sulfat yang merupakan suatu larutan elektrolit. Larutan elektrolit dapat menghantarkan arus listrik. Sifat inilah yang menyebabkan larutan asam sulfat dapat menghidupkan mesin kendaraan. Selain asam sulfat, larutanlarutan apa sajakah yang dapat menghantarkan arus listrik? Mengapa larutan elektrolit dapat menghantarkan arus listrik? Adakah hubungan antara ikatan kimia dan larutan elektrolit? Untuk mengungkap rahasia tersebut.
1. Perbedaan Sifat antara Larutan Elektrolit dan Nonelektrolit
Ada larutan yang dapat menyalakan lampu dan yang tidak dapat menyalakan lampu. Di antara larutan yang dapat menyalakan lampu, ada yang nyala lampunya terang dan yang nyala lampunya redup. Nyala lampu merupakan ciri bahwa larutan tersebut dapat menghantarkan arus listrik. Dengan demikian, larutan elektrolit dan nonelektrolit dapat dibedakan dengan mengamati nyala lampu. Suatu larutan dikatakan larutan elektrolit jika larutan tersebut dapat menyalakan lampu. Sebaliknya, suatu larutan dikatakan larutan nonelektrolit jika larutan tersebut tidak dapat menyalakan lampu. Larutan elektrolit dapat dibagi dua, yaitu elektrolit kuat dan elektrolit lemah. Apakah perbedaan antara larutan elektrolit kuat dan elektrolit lemah? Nyala lampu elektrolit kuat terang, sedangkan nyala lampu elektrolit lemah redup. Perbedaan antara larutan elektrolit dan larutan nonelektrolit dapat juga diamati dari ada tidaknya gelembung. Larutan elektrolit akan menghasilkan gelembung gas, sedangkan larutan nonelektrolit tidak menghasilkan gelembung gas. Dapatkah Anda menyebutkan contoh-contoh dari larutan elektrolit kuat, elektrolit lemah, dan nonelektrolit?.
2. Penyebab Larutan Elektrolit Dapat Menghantarkan Arus Listrik
Untuk mengetahui penyebab larutan elektrolit dapat menghantarkan arus listrik, Anda harus memahami terlebih dahulu konsep reaksi disosiasi (penguraian senyawa menjadi ion dalam larutan). Ketika suatu senyawa dilarutkan ke dalam air, ada tiga kemungkinan yang dapat terjadi, yaitu terdisosiasi (terurai) sempurna, terdisosiasi sebagian, dan tidak terdisosiasi. Senyawa elektrolit kuat akan terdisosiasi sempurna, senyawa elektrolit lemah hanya terdisosiasi sebagian, sedangkan senyawa nonelektrolit tidak terdisosiasi. Suatu senyawa yang mengalami disosiasi, baik sempurna maupun sebagian terurai menjadi ion-ion penyusunnya (ion positif dan ion negatif). Reaksi-reaksi disosiasi pada senyawa elektrolit dapat dituliskan sebagai berikut;
Daya hantar listrik berhubungan dengan ion-ion dalam larutan. Aliran arus listrik berbentuk pergerakan partikel berupa partikel elektron maupun ion. Ketika dilewatkan ke dalam larutan elektrolit, arus listrik akan dihantarkan oleh ion-ion dalam larutan sehingga lampu dapat menyala. Semakin banyak ion-ion dalam larutan, daya hantar larutan semakin kuat. Itulah sebabnya nyala lampu larutan elektrolit kuat lebih terang daripada larutan elektrolit lemah.
Tahukah Anda, mengapa larutan nonelektrolit tidak dapat menghantarkan arus listrik? Ketika dilarutkan ke dalam air, larutan-larutan nonelektrolit seperti larutan gula dan alkohol tidak terurai menjadi ionionnya. Larutan nonelektrolit terurai menjadi molekul-molekulnya.
3. Hubungan antara Sifat Hantar Listrik dan Jenis Ikatan Kimia
Pada bab mengenai Ikatan Kimia, Anda telah mempelajari mengenai ikatan ion dan ikatan kovalen. Senyawa yang memiliki ikatan ion disebut senyawa ionik, sedangkan senyawa yang memiliki ikatan kovalen disebut senyawa kovalen. Senyawa kovalen terbagi dua, yaitu senyawa kovalen polar dan nonpolar. Dengan menggambarkan struktur Lewis ketujuh senyawa yang diuji dalam Selidikilah 5.1, Anda dapat mengetahui hubungan antara sifat daya hantar listrik dan jenis ikatan kimia.
Senyawa yang merupakan senyawa ionik adalah garam dapur (NaCl). Adapun asam asetat (CH3COOH), asam klorida (HCl), natrium hidroksida (NaOH), dan amonium hidroksida (NH4OH) merupakan contoh-contoh senyawa kovalen polar. Bagaimana dengan larutan gula dan alkohol? Kedua senyawa tersebut termasuk senyawa kovalen nonpolar. Berdasarkan hal tersebut dapat disimpulkan bahwa senyawa ionik dan kovalen polar merupakan senyawa elektrolit, sedangkan senyawa kovalen nonpolar merupakan senyawa nonelektrolit.
B. Konsep Reaksi Redoks
Jika Anda membelah buah apel, kemudian membiarkannya di ruang terbuka, buah apel tersebut akan berubah warna menjadi kecokelat-cokelatan. Tahukah Anda, mengapa hal tersebut dapat terjadi? Perubahan warna pada buah apel diakibatkan reaksi oksidasi yang dialami senyawa kimia yang terkandung dalam buah apel.
Suatu reaksi oksidasi biasanya disertai oleh reaksi reduksi sehingga lazim disebut reaksi redoks. Apakah reaksi reduksi oksidasi itu? Konsep reaksi redoks dapat ditinjau dari tiga konsep, yaitu penggabungan dan pelepasan oksigen, pelepasan dan penerimaan elektron, serta peningkatan dan penurunan bilangan oksidasi. Agar Anda memahami perbedaan ketiga konsep reaksi redoks tersebut,
1. Konsep Redoks Berdasarkan Pengikatan dan Pelepasan Oksigen
Pada peristiwa pengaratan besi, logam Fe bereaksi dengan oksigen membentuk karat besi (Fe2O3). Artinya, pada reaksi ini logam Fe mengikat oksigen agar membentuk Fe2O3. Pengaratan logam besi merupakan contoh reaksi oksidasi. Berdasarkan hal tersebut, reaksi oksidasi adalah reaksi pengikatan oksigen oleh suatu zat.
Bagaimana dengan peristiwa pada isolasi bijih besi menjadi logam besi? Pada peristiwa ini, bijih besi melepaskan oksigen. Artinya, bijih besi kehilangan oksigen. Mengacu pada fakta ini, reaksi reduksi adalah reaksi pelepasan oksigen oleh suatu zat. Contoh lain reaksi reduksi menurut konsep ini adalah sebagai berikut.
2. Konsep Redoks Berdasarkan Penyerahan dan Penerimaan Elektron
Atom Mg memiliki konfigurasi elektron 2 8 2 sehingga electron valensinya 2. Adapun konfigurasi elektron atom Cl adalah 2 8 7 sehingga elektron valensinya adalah 7. Untuk mencapai kestabilannya, atom Mg harus melepaskan 2 elektron, sedangkan atom Cl membutuhkan 1 elektron. Jadi, atom Mg memberikan masing-masing 1 elektron kepada 2 atom Cl sehingga 1 atom Mg mengikat 2 atom Cl. Setelah melepaskan 2 elektron, atom Mg menjadi ion Mg2+. Adapun atom Cl menjadi ion Cl– setelah menerima 1 elektron. Senyawa yang terbentuk adalah MgCl2.
Reaksi kimia yang terjadi pada pembentukan ikatan MgCl2 dapat juga dituliskan melalui tahapan berikut.
Mg(s) → Mg2+(aq) + 2 e– merupakan reaksi oksidasi, sedangkan Cl2(aq) + 2 e– →2 Cl–(aq) merupakan reaksi reduksi. reaksi oksidasi adalah reaksi pelepasan elektron, sedangkan reaksi reduksi adalah reaksi penerimaan elektron. Zat yang mengalami reaksi oksidasi disebut reduktor, sedangkan zat yang mengalami reaksi reduksi disebut oksidator. Jadi, Mg merupakan reduktor dan Cl2 merupakan oksidator. Ingin lebih memahami konsep reaksi redoks berdasarkan penerimaan dan pelepasan elektron?
3. Konsep Redoks Berdasarkan Peningkatan dan Penurunan Bilangan Oksidasi
Konsep redoks berdasarkan peningkatan dan penurunan bilangan oksidasi ini merupakan konsep redoks yang sekarang digunakan oleh siapa pun yang mempelajari ilmu Kimia. Apakah bilangan oksidasi itu? Bilangan oksidasi adalah muatan yang dimiliki atom jika atom tersebut berikatan dengan atom lain. Nilai bilangan oksidasi suatu atom dapat diketahui lebih mudah dengan menggunakan aturan berikut.
Dengan menggunakan aturan tersebut, bilangan oksidasi atom-atom yang terlibat dalam reaksi antara logam Mg dan gas klorin (atom Mg dan Cl) dapat diketahui. Bilangan oksidasi atom Mg dalam bentuk bebasnya = 0, sedangkan dalam bentuk senyawa MgCl2 = +2. Bilangan oksidasi atom Cl dalam gas Cl2 = 0, sedangkan dalam bentuk senyawa MgCl2 = –1. Jadi, bilangan oksidasi atom Mg mengalami peningkatan dari 0 menjadi +2, sedangkan bilangan oksidasi atom Cl mengalami penurunan dari 0 menjadi –1.
Suatu atom dikatakan mengalami reaksi oksidasi (reduktor) jika mengalami peningkatan bilangan oksidasi dan dikatakan mengalami reaksi reduksi (oksidator) jika mengalami penurunan bilangan oksidasi. Dengan demikian, Mg merupakan reduktor, sedangkan Cl2 merupakan oksidator.
C. Penerapan Konsep Larutan Elektrolit dan Reaksi Redoks
Anda telah mempelajari konsep larutan elektrolit dan reaksi reduksi oksidasi. Apakah manfaat dari konsep-konsep yang telah Anda pelajari tersebut?
1. Penerapan Konsep Redoks dalam Memberi Nama Senyawa
Mengenai Tata Nama dan Persamaan Reaksi Kimia, Anda telah mempelajari cara memberi nama senyawa kimia. Senyawa kimia diberi nama berdasarkan muatan dan jenis unsur-unsur penyusunnya, misalnya NaCl (natrium klorida), MgCl2 (magnesium klorida), dan CO2 (karbon dioksida).
Bagaimana dengan senyawa yang unsur penyusunnya memiliki nilai bilangan oksidasi lebih dari satu, seperti Fe dan Cu? Fe memiliki dua nilai bilangan oksidasi, yaitu +2 dan +3, sedangkan nilai bilangan oksidasi Cu adalah +1 dan +2. Jika unsur logam tersebut berikatan dengan unsur nonlogam akan membentuk lebih dari satu jenis senyawa. Untuk itu, penulisan kedua senyawa yang terbentuk dibedakan dengan cara menuliskan muatannya dengan angka Romawi dalam tanda kurung. Angka Romawi ditulis di belakang nama unsur yang bersangkutan. Berikut contoh penulisan nama untuk senyawa yang terbentuk antara Fe dan Cl.
2. Penerapan Konsep Larutan Elektrolit dan Konsep Redoks dalam Mengatasi Masalah Lingkungan
Berdirinya pabrik-pabrik menimbulkan dilema bagi pemerintah dan masyarakat. Di satu sisi, keberadaan pabrik membantu pemerintah mengurangi angka pengangguran. Akan tetapi, adanya pabrik justru menimbulkan masalah bagi lingkungan. Air limbah pabrik yang tidak diolah atau diolah secara tidak benar dapat merusak lingkungan karena air limbah mengandung zat pencemar, seperti senyawa organik dan logam berat. Ada beberapa cara pengolahan limbah, di antaranya pengolahan secara fisika, kimia, dan biologi.
a. Pengolahan Secara Fisika
Pengolahan Secara Fisika Pada umumnya, sebelum dilakukan pengolahan lanjutan terhadap air buangan, bahan-bahan tersuspensi berukuran besar dan yang mudah mengendap atau bahan-bahan yang terapung disisihkan terlebih dahulu. Penyaringan (screening) merupakan cara yang efisien dan murah untuk menyisihkan bahan tersuspensi yang berukuran besar. Bahan tersuspensi yang mudah mengendap dapat disisihkan secara mudah dengan proses pengendapan.
Proses flotasi banyak digunakan untuk menyisihkan bahan-bahan yang mengapung seperti minyak dan lemak agar tidak mengganggu proses pengolahan berikutnya. Flotasi juga dapat digunakan sebagai cara penyisihan bahan-bahan tersuspensi (clarification) atau pemekatan lumpur endapan (sludge thickening) dengan memberikan aliran udara ke atas (air flotation). Proses filtrasi di dalam pengolahan air buangan biasanya dilakukan untuk mendahului proses adsorpsi atau proses reverse osmosis-nya. Tujuannya untuk menyisihkan sebanyak mungkin partikel tersuspensi dari dalam air agar tidak mengganggu proses adsorpsi atau menyumbat membran yang digunakan dalam proses osmosis.
Proses adsorpsi dengan karbon aktif dilakukan untuk menghilangkan senyawa aromatik (misalnya: fenol) dan senyawa organik terlarut lainnya terutama jika diinginkan untuk menggunakan kembali air buangan tersebut.
Teknologi membran (reverse osmosis) biasanya diaplikasikan untuk unitunit pengolahan kecil, terutama jika pengolahan ditujukan untuk menggunakan kembali air yang diolah. Biaya instalasi dan operasinya sangat mahal.
b. Pengolahan Secara Kimia
Pengolahan air buangan secara kimia biasanya dilakukan untuk menghilangkan partikel-partikel yang tidak mudah mengendap (koloid), logam-logam berat, senyawa fosfor, dan zat organik beracun. Proses ini dilakukan dengan cara menambahkan bahan kimia tertentu ke dalam air limbah. Penyaringan bahan-bahan tersebut pada prinsipnya berlangsung melalui perubahan sifat bahan-bahan tersebut, yaitu dari tidak dapat diendapkan menjadi mudah diendapkan (flokulasi-koagulasi), baik dengan atau tanpa reaksi oksidasi-reduksi dan juga berlangsung sebagai hasil reaksi oksidasi.
Pengendapan bahan tersuspensi yang tidak mudah larut dilakukan dengan menambahkan elektrolit yang memiliki muatan yang berlawanan dengan muatan koloidnya agar terjadi netralisasi muatan koloid tersebut, sehingga akhirnya dapat diendapkan. Agar terjadi pengendapan logamlogam berat atau senyawa fosfor, air diberi perlakuan khusus terlebih dahulu dengan pengondisian pH air. Penyisihan logam berat dan senyawa fosfor dilakukan dengan menambahkan larutan alkali (misalnya air kapur) sehingga membentuk endapan hidroksida dari logam-logam tersebut atau endapan hidroksiapatit.
Penghilangan bahan-bahan organik beracun seperti fenol dan sianida pada konsentrasi rendah dapat dilakukan dengan mengoksidasinya dengan klor (Cl2) kalsium permanganat, aerasi, ozon hidrogen peroksida. Pada dasarnya kita dapat memperoleh efisiensi tinggi dengan pengolahan secara kimia, akan tetapi biaya pengolahan menjadi mahal karena memerlukan bahan kimia.
c. Pengolahan Secara Biologi
Semua air buangan yang biodegradable dapat diolah secara biologi. Pengolahan limbah cair dengan proses biologi umumnya digunakan untuk menghilangkan bahan-bahan organik terlarut dan koloidal yang membutuhkan biaya yang cukup mahal untuk menghilangkannya. Dalam beberapa dasawarsa telah berkembang berbagai metode pengolahan biologi dengan segala modifikasinya.
Pada dasarnya, reaktor pengolahan secara biologi dapat dibedakan atas dua jenis, yaitu:
- Reaktor pertumbuhan tersuspensi (suspended growth reactor);
- Reaktor pertumbuhan lekat (attached growth reactor).
Jika menggunakan reaktor pertumbuhan tersuspensi, mikroorganisme tumbuh dan berkembang dalam keadaan tersuspensi. Proses lumpur aktif yang banyak dikenal berlangsung dalam reaktor jenis ini. Proses lumpur aktif merupakan proses aerobik, pada proses ini mikroba tumbuh dalam flok (lumpur) yang terdispersi, pada flok inilah akan terjadi proses degradasi. Proses lumpur aktif berlangsung dalam reaktor dengan pencampuran sempurna dilengkapi dengan umpan balik (recycle) lumpur dan cairannya.
Di dalam reaktor pertumbuhan lekat, mikroorganisme tumbuh di atas media pendukung dengan membentuk lapisan tipis untuk melekatkan dirinya. Berbagai modifikasi telah banyak dikembangkan selama ini, antara lain:
- Trickling filter,
- Cakram biologi,
- Filter terendam, dan
- Reaktor fluidisasi.
Seluruh modifikasi ini dapat menghasilkan efisiensi penurunan BOD Kata Kunci sekitar 80%–90%. Ditinjau dari segi lingkungan di mana berlangsung proses penguraian secara biologi, proses ini dapat dibedakan menjadi dua jenis:
- Proses aerob, yang berlangsung dengan hadirnya oksigen;
- Proses anaerob, yang berlangsung tanpa adanya oksigen.
Apabila BOD air buangan tidak melebihi 400 mg/L, proses aerob masih dapat dianggap lebih ekonomis dibandingkan proses anaerob. Pada BOD lebih tinggi dari 4.000 mg/L, proses anaerob menjadi lebih ekonomis.
Add Comments